Effect of Sintering on Microstructure and Properties of Hydroxyapatite Produced by Different Synthesizing Methods
نویسندگان
چکیده
The aim of this study is to investigate the effect of the sintering schedule on microstructure and properties of hydroxyapatite which is produced by different synthesizing methods. Hence, wet-chemical precipitation and solid-state reaction were performed to prepare nano-sized hydroxyapatite (HA) powders. Powders were then uniaxially pressed and sintered by varying temperatures and times. XRD and SEM were used to identify phases and morphology. Density and porosity of the sintered sample were determined using the Archimedes technique. Flexural strength was measured by a universal testing machine. The results show that density and strength could be improved by increasing the sintering temperature in both HAW and HAD. However, with increasing sintering temperatures, average grain sizes of HAW and HAD samples were not significantly increased. The sintering temperature seems to play a more important role than sintering time in the densification process of hydroxyapatite. In addition, the thermal stability in sintered HAD samples induced a weaker flexural strength of samples in comparison with HAW. Therefore, the optimized microstructure and properties of sintered hydroxyapatite can be prepared by using the suitable synthesizing method together with the workable sintering schedule for each synthesizing process.
منابع مشابه
DENSIFICATION AND MICROSTRUCTURE CHARACTERISTICS OF A PREALLOYED ALPHA BRASS POWDER PROCESSED BY LIQUID PHASE SINTERING
The rapidly solidified prealloyed alpha brass powder with a size range of 40 to 100 μm produced by water atomization process was consolidated using liquid phase sintering process. The relationships between sintering temperature, physic-mechanical properties and microstructural characteristics were investigated. Maximum densification was obtained at 930 °C, under 600 MPa compacting pressure,...
متن کاملThe Effect of sintering temperature on microstructure and hardness of milled WC- 20 wt.% equiatomic (Fe,Co) cemented carbides
In this study, WC–20 wt.% equiatomic (Fe,Co) powder mixture was milled in a planetary ball mill. The effects of different milling time (15 min, 5h, 10h, and 25 h) and sintering temperatures on the microstructure and mechanical properties of this equi-Fe substituted cermet were investigated. The structural evolution and the crystallite size changes of the powders during milling were monitored by...
متن کاملExperimental Investigation of FGM Dental Implant Properties Made from Ti/HA Composite
Although titanium/hydroxyapatite composite is an attractive material for dental implants, it would be more useful if it could be produced as a functionally graded material (FGM). In this paper, microstructure and microhardness of a five-layer titanium/hydroxyapatite functionally graded material has been investigated. First, titanium and hydroxyapatite (HA) powders were mixed with the Ti to HA v...
متن کاملTHE EFFECT OF RAW MATERIALS CONCENTRATION ON HYDROXYAPATITE POWDER CHARACTERISTICS AND SINTERING BEHAVLOR
Ultrafine hydroxyapatite (HAp) powders with crystallite size in the range of 10-90 nm were synthesized by chemical precipitation process using Ca(OH)2 and H3PO4 solutions as starting materials. Molar ratio of Ca/P=1.68 was kept constant throughout the process and alkaline condition for the reaction was maintained using ammonium hydroxide. The role of raw material concentration on HAp crystallit...
متن کاملThe effect of sintering parameters on the microstructure and dielectric properties of bismuth titanate
In the present work, the effect of sintering parameters including sintering temperature, soaking time, and heating rate on densification, microstructure, and dielectrical properties of bismuth titanate (Bi4Ti3O12) ceramics were investigated. Bismuth titanate was synthesized by the solid state method and titanium oxide and bismuth oxide used as raw materials. X-ray diffraction (XRD) indicated, p...
متن کامل